Pereskia aculeata vibrational model by Raman characterization and DFT method

Authors

  • Quesle Martins Universidade Federal de Rondônia
  • Natali Felix Arinos Universidade Federal de Mato Grosso
  • Cristian Aguirre Universidade Federal de Mato Grosso
  • Jorge Brito de Faria Universidade Federal de Mato Grosso

DOI:

https://doi.org/10.31686/ijier.vol9.iss1.2918

Keywords:

Raman spectrum, DFT method, Ora-Pro-Nóbis, phenolic, flavonoids

Abstract

Raman scattering was used to obtain vibrational modes in a Pereskia aculeata sample. The obtained spectrum was compared with quercetin's theoretical spectra, kaempferol, isorhamnetin, rutinose, caffeic, and tartaric acid, generated from the density functional theory (DFT) method, which used structures of the known composition present in the sample. Among the main compounds, phenolic acids and flavonoids are mentioned. Vibrational signatures, designated as CO and CH group modes, are abundant and bands in the region between 800 and 1800 cm-1. This showed that the theoretical and experimental results had good correspondence between the flavonoids. Statistical observations of correlation and principal component analysis (PCA) were used, which helped in the process of correlation between sample and data obtained. Theoretical spectra have been corrected by a single scale factor of 0.961, and vibrational contributions by the molecular group were via VEDA software.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Quesle Martins, Universidade Federal de Rondônia

Departamento de Física

Natali Felix Arinos, Universidade Federal de Mato Grosso

 Instituto de Física

Cristian Aguirre, Universidade Federal de Mato Grosso

Instituto de Física

Jorge Brito de Faria, Universidade Federal de Mato Grosso

Instituto de Física

References

Agarwal UP, Analysis of Cellulose and LignocelluloseMaterials by Raman Spectroscopy: A Review of the Current Status, Molecules, 2019, 24, 1659. https://doi.org/10.3390/molecules24091659

Alston JM, Beddow JM, Pardey PG, Agricultural Research, Productivity, and Food Prices in the Long Run. Science, 2009, 325, 1209–1210. DOI:10.1126/science.1170451

Bauschlicher CW, Langhoff SR, The calculation of accurate harmonic frequencies of large molecules: the polycyclic aromatic hydrocarbons, a case study, Spectrochim. Acta A, 1997, 53, 1225-1240. https://doi.org/10.1016/S1386-1425(97)00022-X

Bauschlicher CW, Ricca A, On the calculation of the vibrational frequencies of polycyclic aromatic hydrocarbons, Mol. Phys., 2010, 108, 2647-2654. http://dx.doi.org/10.1080/00268976.2010.518979

Becke AD., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913

Bunaciu A, Aboul-Enein HY, Hoang VD, Vibrational Spectroscopy Applications in Biomedical, Pharmaceutical and Food Sciences, Copyright, Elsevier Inc., 2020, 15-36.

Calixto C, Thiemi D, Natally K, Souza P, Crestani S, Gasparotto A, Laverde U., Involvement of arginine-vasopressin in the diuretic and hypotensive effects of Pereskia grandifolia Haw. (Cactaceae), J. Ethnopharmacol, 2012, 144, 86-93. https://doi.org/10.1016/j.jep.2012.08.034

Conners T, Banerjee S, Surface Analysis of Paper. Ed. CRC, Mississippi, 1995.

Costa, Agostini-Costa TS., Bioactive compounds and health benefits of Pereskioideae and Cactoideae: A review, Food Chem., 2020, 327, 126961. https://doi.org/10.1016/j.foodchem.2020.126961

Costa S, Richter A, Schmidt U, Breuninger S, Hollricher O, Confocal Raman microscopy in life sciences, Morphologie, 2019, 103, 11-16. https://doi.org/10.1016/j. morpho.2018.12.003.

Desa, U., Population division working paper no. ESA/P/WP, 2015, 241.

Ditchheld R, Hehre WJ., Pople JA, Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis forMolecular-Orbital Studies of OrganicMolecules, J. Chem. Phys., 1971, 54, 724. https://doi.org/10.1063/1.1674902

Erdogdu Y, Baskose UC, Saglam S, Erdogdu M, Ogutcu H, Özçelik S., Structural, thermal, spectroscopic, electronic and biological activity properties of coumarin-153 dyes for DSSCs: A DFT benchmark study, J. Mol. Struc., 2020, 1221, 128873. https://doi.org/10.1016/j.molstruc.2020.128873

Ferreres F, Grosso C, Gil-Izquierdo A, Valentao P, Mota AT, Andrade PB., Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction, Food Chem, 2017, 230, 463–474. https://doi.org/10.1016/j.foodchem.2017.03.061

Garcia AAJ, Corrêa RCG, Barros L, Pereira C, Abreu RMV, Alves MJ, Calhelha RC, Bracht A, Peralta RM, Ferreira IC, Phytochemical prole and biological activities of ’Ora-Pro-Nóbis’ leaves (Pereskia aculeataMiller), an underexploited superfood from the Brazilian Atlantic Forest, Food Chem., 2019, 294, 302-308. https://doi.org/10.1016/j.foodchem.2019.05.074

Gaussian 03, Revisão C.02, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, JA Montgomery, Jr., T. Vreven, KN Kudin, JC Burant, JM Millam, SS Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, GA Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, JE Knox, HP Hratchian, JB Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, RE Stratmann, O. Yazyev, AJ Austin, R. Cammi, C. Pomelli, JW Ochterski, PY Ayala, K. Morokuma, GA Voth, P. Salvador, JJ Dannenberg, VG Zakrzewski, S. Dapprich, AD Daniels, MC Strain, O. Farkas, DK Malick, AD Rabuck, K. Raghavachari, JB Foresman, JV Ortiz, Q. Cui, AG Baboul, S. Clifford, J.Cioslowski, BB Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, RL Martin, DJ Fox, T. Keith, MA Al-Laham, CY Peng, A. Nanayakkara, M. Challacombe, PMW Gill, B. Johnson, W. Chen, MW Wong, C. Gonzalez e JA Pople, Gaussian, Inc., Wallingford CT, 2004.

Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, World population stabilization unlikely this century, Science, 2014, 346, 234-237. DOI:10.1126/science.1257469

Gierlinger N, Schwanninger M., The potential of Raman microscopy and Raman imaging in plant research, J. Spectrosc., 2007, 21, 69. https://doi.org/10.1155/2007/498206

Godfray H, Beddington JR, Crute I, Haddad L, Lawrence D, Muir J, Pretty J, Robinson S, Thomas S, Toulmin C, Food Security: The Challenge of Feeding 9 Billion People, Science, 2010, 327, 812–818. DOI:10.1126/science.1185383

Goncalves ASM, Peixe RG, Sato A, Muzitano MF, Souza R, Machado TD, Leal I, Pilosocereus arrabidae (Byles & Rowley) of the Grumari sandbank, RJ, Brazil: Physical, chemical characterizations and antioxidant activities correlated to detection of flavonoids, Food Res. Int., 2015, 70, 110–117. https://doi.org/10.1016/j.foodres.2014.10.009

Hehre WJ, Ditchheld R, Pople JA., Self-Consistent Molecular Orbital Methods. XII. Further extensions of Gaussian type basis sets for use in molecular-orbital studies of organic-molecules, J. Chem. Phys., 1972, 56, 2257. https://doi.org/10.1063/1.1677527

Huang F, Li Y, Guo H, Xu Z, Chen J, Zhang Y, Identification of waste cooking oil and vegetable oil via Raman spectroscopy, J. Raman Spectrosc., 2016, 47, 860–864. https://doi.org/10.1002/jrs.4895

Hu R, He T, Zhang Z, Yang Y, Liu M, Safety analysis of edible oil products via Raman spectroscopy, Talanta, 2019, 191, 324-332. https://doi.org/10.1016/j.talanta.2018.08.074.

Jamróz, MH. Vibrational Energy Distribution Analysis, VEDA 4 program, Warsaw, Poland, 2004.

Jamróz MH, Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations. Spectroch. Acta A, 2013, 114, 220–230. https://doi.org/10.1016/j.saa.2013.05.096

Kalasinsky KS, Hadheld T, Shea AA, Kalasinsky VF, Nelson MP, Neiss J, Drauch AJ, Vanni G, Treado P, Raman Chemical Imaging Spectroscopy Reagentless Detection and Identification of Pathogens: Signature Development and Evaluation, Anal. Chem., 2007, 79, 2658-2673. https://doi.org/10.1021/ac0700575

Karacaglar N, Bulati T, Boyaci IH, Topcu A, Raman spectroscopy coupled with chemometric methods for the discrimination of foreign fats and oils in cream and yogurt, J. Food Drug Anal., 2019, 27, 101-110. https://doi.org/10.1016/j.jfda.2018.06.008

Komjáti B, Urai Á, Hosztah S, Kökösi J, Kováts B, Nagy J, Horváth P., Systematic study on the TD-DFT calculated electronic circular dichroism spectra of chiral aromatic nitro compounds: A comparison of B3LYP and CAM-B3LYP, Spectrochim. Acta A, 2016, 155, 95-102. https://doi.org/10.1016/j.saa.2015.11.002

Larkin P, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, 2nd ed., Elsevier, 2018.

Lee C, Yang W, Parr RG, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785

Lu L, Hu H, Hou H, Wang B., An improved B3LYP method in the calculation of organic thermochemistry and reactivity, Comput. Theor. Chem., 2013, 1015, 64-71. https://doi.org/10.1016/j.comptc.2013.04.009

Lupoi J, Gjersing E, Davis EM, Evaluating Lignocellulosic Biomass, Its Derivatives, and Downstream Products with Raman Spectroscopy, Frente. Bioeng. Biotechnol., 2015, 3, 50. https://www.frontiersin.org/article/10.3389/ fbioe.2015.00050

Machado DC, Pinto ND, Silva JM, Conegundes JLM, Gualberto ACM, Gameiro J, Scio E., Pereskia aculeata: A plant food with antinociceptive activity, Pharm. Biol. 2015, 1, 1780-1785. https://doi.org/10.1016/j.jep.2015.07.032

Mahesar SA, Sherazi S, Khaskheli AR, Kandhro AA, Uddin S, Analytical approaches for the assessment of free fatty acids in oils and fats, Anal. Methods, 2014, 6, 4956-4963. https://doi.org/10.1039/C4AY00344F

Makarem M, Lee CM, Kahe K, Huang S, Chae I, Yang H, Kubicki JD, Kim SH, Probing cellulose structures with vibrational spectroscopy, Cellulose, 2019, 26, 35–79. https://doi.org/10.1007/s10570-018-2199-z

Mattioda A, Bauschlicher CW, Infrared spectroscopy of matrix-isolated neutral polycyclic aromatic nitrogen heterocycles: The acridine series, Spectrochim. Acta A, 2017, 181, 286–308. http://dx.doi.org/10.1016/j.saa.2017.03.044

NIST, National Institute of Standards and Technology, 2020. https://cccbdb.nist.gov/vibscalejust.asp

Nogales-Bueno J, Baca-Bocanegra B, Rooney A, Hernández-Hierro JM, Byrne HJ, Heredia FJ, Study of phenolic extractability in grape seeds by means of ATR-FTIR and Raman spectroscopy. Food Chem., 2017, 232, 602-609. https://doi.org/10.1016/j.foodchem.2017.04.049

Nyquist RA, Kagel RO, Handbook of infrared and Raman spectra of inorganic compounds and organic salts: infrared spectra of inorganic compounds, Academic press inc., 1971.

Ozkan G, Sagdic O, Ekici L, Ozturk I, Ozkan M, J., Phenolic compounds of Origanum sipyleum L. extract, and Its antioxidant and antibacterial activities, J. Food Lipids, 2007, 14, 157-169. https://doi.org/10.1111/j.1745-4522.2007.00077.x

Petersson GA, Al-Laham M., A complete basis set model chemistry. II. Open-shell systems and the total energies of the rst-row atoms, J. Chem. Phys., 1991, 94, 6081-90. https://doi.org/10.1063/1.460447

Pinto N, Duque A, Pacheco N, Mendes R, Motta E, Bellozi P. Scio E, Pharm. Biol. 1, 2015 1780-1785. https://doi.org/10.3109/13880209.2015.1008144

Rakymzhan A, Yakupov T, Yelemessova Z, Bukasov R, Yakovlev VV, Utegulov ZN, Time-resolved assessment of drying plants by Brillouin and Raman spectroscopies, J. Raman Spectrosc. 2019, 50, 1881-1889. https://doi.org/10.1002/jrs.5742

Raman CV, Krishnan KS., The production of new radiations by light scattering. Part I Proc. R. Soc. Lond. A. Math., 1929, 122, 23-35. http://dspace.rri.res.in/handle/2289/2143

Ramya T, Gunasekaran S, Ramkumaar GR., Density functional theory, restricted Hartree – Fock simulations and FTIR, FT-Raman and UV–Vis spectroscopic studies on lamotrigine, Spectrochim. Acta A, 2013, 114, 277-283. https://doi.org/10.1016/j.saa.2013.05.057

Rassolov VA, Pople JA, Ratner MA, Windus TL., 6-31G* basis set for atoms K through Zn, J. Chem. Phys.,1998, 109, 1223-29. https://doi.org/10.1063/1.476673

Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss L, 6-31G* Basis Set for Third-Row Atoms. J. Comp. Chem., 2001, 22, 976-984. https://doi.org/10.1002/ jcc.1058

Saleem M, Atta BM, Ali Z, Bilal M, Laser-induced fluorescence spectroscopy for early disease detection in grape fruit plants, Photochem. Photobiol. Sci., 2020, 19, 713–721. https://doi.org/10.1039/C9PP00368A

Saraiva AGQ, Saraiva GD, Albuquerque RL, Nogueira CES, Teixeira AMR, Lima LB, Cruz BG, Sousa F., Chemical analysis and vibrational spectroscopy study of essential oils from Lippia sidoides and of its major constituent, Vib. Spectrosc., 2020, 110, 103111. https://doi.org/10.1016/j.vibspec.2020.103111

Schulz H, Baranska M., Identification and quantification of valuable plant substances by IR and Raman spectroscopy, Vib. Spectrosc., 2007, 43, 13-25. https://doi.org/10.1016/j.vibspec.2006.06.001

Sene C, McCann MC, Wilson RH, Grinter R, Fourier-transform Raman and Fourier-transform infrared spectroscopy – an investigation of 5 higher plant cell walls and their components, Plant Physiology, 1994, 106, 1623–1631. https://doi.org/10.1104/pp.106.4.1623

Siger A, Nogala-Kalucka M, Lampart-Szczapa E., The content and antioxidant activity of phenolic compounds in cold pressed plant oils, J. Food Lipids, 2008, 15, 137-149. https://doi.org/10.1111/j.1745-4522.2007.00107.x

Silva DO, Seifert M, Nora FR, Bobrowski VL, Freitag RA, Kucera HR, Gaikwad NW, Acute Toxicity and Cytotoxicity of Pereskia aculeata, a Highly Nutritious Cactaceae Plant, J. Med. Food, 2017, 20, 403-409. https://doi.org/10.1089/jmf.2016.0133

Souza LF, Caputo L, Barros IBI, Fratianni F, Nazzaro F, De Feo V., Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities, Int. J.Mol. Sci., 2016, 17, 1478. https://doi.org/10.3390/ ijms17091478

Thygesen GL, Gierlinger N, The molecular structure within dislocations in Cannabis sativa bres studied by polarised Raman microspectroscopy, J. Struc. Biol., 2013, 182, 219–225. https://doi.org/10.1016/j.jsb.2013.03.010

Toporski J, Dieing T, Hollricher O, Confocal Raman microscopy (2nd ed.), Springer Series in Surface Sciences (66), Springer International Publishing AG, 2018.

Vieira CR, Silva BP, Carmo MAV., Effect of Pereskia aculeata Mill. in vitro and in overweight humans: A randomized controlled trial, J. Food Biochem., 2019, 43, e12903. https://doi.org/10.1111/jfbc.12903

Wu X, Gao S, Wang JS, Wang H, Huanga YW, Zhaod Y, The surface-enhanced Raman spectra of aflatoxins: spectral analysis, density functional theory calculation, detection and differentiation. Analyst, 2012, 137, 4226-34. https://doi.org/10.1039/ c2an35378d

Downloads

Published

2021-01-01
CITATION
DOI: 10.31686/ijier.vol9.iss1.2918

How to Cite

Martins, Q., Felix Arinos, N., Aguirre, C., & Brito de Faria, J. (2021). Pereskia aculeata vibrational model by Raman characterization and DFT method. International Journal for Innovation Education and Research, 9(1), 485–505. https://doi.org/10.31686/ijier.vol9.iss1.2918
Received 2020-12-23
Accepted 2021-01-05
Published 2021-01-01